Campus Virtuales

La Universidad en la Nube

Número completo:

 

 

 

 

 

 

 

 

 

 


LIME: un modelo de recomendación para entornos de aprendizaje online formal/informal
LIME: a model of recommendation for online learning environments formal/informal

Alberto Corbí. Logroño (La Rioja, España)

Daniel Burgos. Logroño (La Rioja, España)

Número completo:

 

 

 

 

 

 

 

 

 

 


LIME: un modelo de recomendación para entornos de aprendizaje online formal/informal
LIME: a model of recommendation for online learning environments formal/informal

Alberto Corbí. Logroño (La Rioja, España)

Daniel Burgos. Logroño (La Rioja, España)

Resumen/Abstract

Resumen / Abstract


En los modelos e implementaciones sobre eLearning (conocidos habitualmente como sistemas Gestores de Aprendizaje o LMS) se da una aparente ausencia de conexión entre las actividades de índole formal e informal. Además, la metodología online se focalice en el establecimiento de un set de unidades y objetos de aprendizaje, así como tests y recursos como foros de discusión, blogs personales y mensajería. Ignoran, por tanto, todo el potencial del aprendizaje que surge de la interrelación entre el LMS, redes sociales y otras fuentes externas. Gracias a este comportamiento, a la interacción del usuario y a la labor de seguimiento y consejo personalizado por parte de un tutor, puede mejorar esta experiencia de aprendizaje. Se ha diseñado y desarrollado un modelo de aprendizaje online adaptativo para redes sociales de ámbito restringido, que da relevancia a este enfoque. Además, se ha programado un módulo de software que implementa este modelo conceptual de manera práctica y empleando para ello estándares promulgados por el IMS Global y tecnologías web. Finalmente se presenta el despliegue técnico de este producto entorno a un sistema gestor de contenidos académicos real.

In current eLearning models and implementations (e.g. Learning Management Systems-LMS) there is a lack of engagement between formal and informal activities. Furthermore, the online methodology focuses on a standard set of units of learning and learning objects, along with pre- defined tests, and collateral resources like, i.e. discussion for a and message wall. They miss the huge potential of learning via the interlacement of social networks, LMS and external sources. Thanks to user behavior, user interaction, and personalized counseling by a tutor, learning performance can be improved. We design and develop an adaptation eLearning model for restricted social networks, which supports this approach. In addition, we build a practical eLearning software module, based on standards from IMS Global and web technologies, that implements this conceptual model in a real application case. We present a preliminary deployment status on a modern learning management system.

Palabras Clave/Keywords

Palabras Clave / Keywords


Aprendizaje potenciado mediante la tecnología, Personalización en aprendizaje a distancia, Redes sociales, Modelo Educativo Conceptual, eLearning, LMS.

Technology-enhanced Learning, eLearning, Personalization, Social Networks, Conceptual Educational Model, LMS.

Referencias/References

Referencias / References


[1] R. A. Bjork, (1999). "Assessing our own competence: Heuristics and illusions," in Attention and performance XVII. Cognitive regulation of performance: Interaction of theory and application, D. Gopher and A. Koriat, Eds. Cambridge, MA: MIT Press, pp. 435-459.

[2] V. Romero and D. Burgos, (2010). "Meta-Mender: A meta-rule based recommendation system for educational applications," presented at Proceedings of the Workshop on Recommender Systems for Technology Enhanced Learning, RecsysTEL, Barcelona, Spain.

[3] V. Romero, D. Burgos, and A. Pardo, (2011). "Meta-rule based Recommender Systems for Educational Applications," in Educational Recommender Systems and Technologies: Practices and Challenges, O. Santos and J. Boticario, Eds.: Information Science-Idea Group.

[4] B. White and J. Frederiksen, (2005). "A theoretical framework and approach for fostering metacognitive development," Educational Psychologist, vol. 40, pp. 211–223.

[5] G. Linden, B. Smith, and Y. J., (2003). "Amazon.com recommendations: Item-to-item collaborative filtering," Internet Computing IEEE, vol. 7, pp. 76-80.

[6] B. Marlin, (2003). "Modeling user rating profiles for collaborative filtering," in Advances in neural information processing systems, S. Thrun, L. K. Saul, and B. Schölkopf, Eds. Cambridge, MA: MIT Press.

[7] S. Y. Chen and G. D. Magoulas, (2005). Adaptable and Adaptive Hypermedia Systems. Hershey, PA: IRM Press.

[8] K. I. Ghauth and N. A. Abdullah, "Learning materials recommendation using good learners’ ratings and content-based filtering," Education Technology Research and Development.

[9] T. Kerkiri, A. Manitsaris, and A. Mavridou, (2007). Reputation metadata for recommending personalized e-learning resources. Uxbridge: IEEE Computer Society.

[10] C. Romero, S. Ventura, P. D. De Bra, and C. D. Castro, (2003). "Discovering prediction rules in AHA! courses.," presented at 9th International User Modeling Conferenc.

[11] D. Burgos, C. Tattersall, and R. Koper, (2007). "How to represent adaptation in eLearning with IMS Learning Design" Interactive Learning Environments, vol. 15, pp. 161-170.

[12] J. J. Rocchio, (1971). Relevance feedback in information retrieval, in the SMART Retrieval System. Experiments in Automatic Document Processing. Englewood Cliffs, NJ: Prentice Hall, Inc.

[13] D. Burgos. (2013). "L.I.M.E. A recommendation model for informal and formal learning, engaged". International Journal of Interactive Multimedia and Artificial Intelligence - IJIMAI, 2, 79-86. DOI: 10.9781/ijimai.2013.2211.

[14] Forment M., Casan-Guerrero M.J., Conde M., García F.J., and Severance C. (2011). “Interoperability for LMS: the missing piece to become the common place for e-learning innovation”. International Journal of Knowledge and Learning. Vol. 6, pp. 130-141.

[15] Paulo J. and Queirós R., (2011). “Using the Learning Tools Interoperability Framework for LMS Integration in Service Oriented Architectures”. Conference Proceedings in Technology Enhanced Learning, TECH-EDUCATION '11. Springer Verlag.

[16] S. Saigaonkar and M. Rao. (2010). “XML filtering system based on ontology”. A2CWiC ’10: Proc. of the 1st Amrita ACMW Celebration on Women in Computing in India, pages 1–6.

[17] J. Cheney, S. Lindley, and P. Wadler. (2013). “A practical theory of language-integrated query”. In Proceedings of the 18th ACM SIGPLAN international conference on Functional programming (ICFP '13). ACM, New York, NY, USA, 403-416.

[18] Bosch, H, Heinrich, J., Muller, C., Hoferlin, B., Reina, G., Hoferlin, M., Worner, M. and Koch S., (2009). “Innovative filtering techniques and customized analytics tools”. Visual Analytics Science and Technology. VAST 2009. IEEE Symposium.

[19] Gonzalez, M.A.C., Penalvo, F.J.G., Guerrero, M.J.C.; Forment, M.A., (2009). “Adapting LMS Architecture to the SOA: An Architectural Approach”. Internet and Web Applications and Services, 2009. ICIW '09. pp. 322-327.

C[20] Kelly D. and Thorn K. (2013). “Should Instructional Designers care about the Tin Can API?”. eLearn Magazine, Issue 3.

Cómo citar/How to cite

Cómo citar / How to cite


Corbí, A. & Burgos, D. (2014). LIME: un modelo de recomendación para entornos de aprendizaje online formal/informal. Campus virtuales, 3(1), 12-20.

Corbí, A. & Burgos, D. (2014). LIME: a model of recommendation for online learning environments formal/informal. Campus virtuales, 3(1), 12-20.

Usted está aquí: CAMPUS VIRTUALES REVISTA Número Actual Artículos 4 La Universidad en la Nube