2016 - Revista de Pensamiento Estratégico y Seguridad CISDE, 1 (2).

Número completo
Full number

Introducción al estudio de las propiedades antibacterianas del grafeno
Introduction to the study of the antibacterial properties of graphene

Israel Gago. Cartagena (España).

Inmaculada Molina. Cartagena (España).

Gerardo León. Cartagena (España).

Beatriz Miguel. Cartagena (España).

Número completo
Full number

Introducción al estudio de las propiedades antibacterianas del grafeno
Introduction to the study of the antibacterial properties of graphene

Israel Gago. Cartagena (España).

Inmaculada Molina. Cartagena (España).

Gerardo León. Cartagena (España).

Beatriz Miguel. Cartagena (España).


Resumen / Abstract

El grafeno es uno de los materiales más estudiados en los últimos años debido a sus excelentes propiedades mecánicas, ópticas y eléctricas, centrándose algunos estudios recientes en su capacidad de interactuar con células y tejidos. Entre los retos científicos de la bioingeniería está el desarrollo de nuevos sistemas de tratamiento de heridas mediante sustancias con alto poder bactericida. Las propiedades del grafeno en este sentido pueden aportar soluciones novedosas. En esta comunicación se presentan los resultados preliminares de un estudio sobre inhibición del crecimiento bacteriano en medios dopados con grafeno. La medida de la proliferación bacteriana en medios de cultivo convencionales y dopados con grafeno, confirman que éste actúa de manera efectiva como agente antibacteriano, lo que abre nuevas líneas de investigación en Defensa, entre ellas, la preparación de productos con grafeno para evitar infecciones en heridas abiertas antes de la evacuación del herido, aumentando sus posibilidades de supervivencia.

Graphene is one of the most studied materials in recent years due to its excellent mechanical, optical and electrical properties. Recent studies have been focused on the graphene capacity to interact with cells and tissues. One of the scientific challenges of bioengineering is the development of new systems to the wound healing by products with high bactericidal activity. Properties of graphene in this field can contribute to obtain new solutions. Preliminary results of one study about the inhibition of bacteria growth in graphene doped environments are shown in this paper. Comparison of the measure of the bacterial proliferation in both conventional and graphene doped cultures environments, confirms that graphene can act as an effective antibacterial agent. These results open new research lines in Defense, including the preparation of new graphene containing products to avoid infections in open injuries before wounded evacuation, which should lead to an increase of survival possibilities.

Palabras Clave/Keywords

Palabras Clave / Keywords

Grafeno, Bactericida, Nanocomposites, Ingeniería biomédica, Supervivencia, Sistema combatiente.

Graphene, Bactericide, Nanocomposites, Biomedical engineering, Survival, Combatant system.


Referencias / References

Akash, M.; Vijay, K. S.; Pulya, U. S. (2014). Investigation of mechanical properties of alumina nanoparticle-loaded hybrid glass/carbon-fiber-reinforced epoxy composites. Journal of Applied Polymer Science, 131(1), Artículo APP.39749.

Akhavan, O.; Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, (4), 5731-5736.

Cançado, L. G. (2011). Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nanoletters, (11), 3190-3196.

Chen, J.; Peng, H.; Wang, X.; Shao, F.; Yuan, Z.; Han, H. (2014). Graphene oxide exhibits broad spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, (6), 1879-1889.

Gurunathan, S.; Han, J. W.; Dayem, A. A.; Eppakayala, V.; Kim, J. H. (2012). Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. International Journal of Nanomedicine, (7), 5901-5914.

Hembacher, S.; Giessibl, F. J.; Mannhart, J.; Quate, C. F. (2003). Revealing the hidden atom in graphite by low-temperature atomic force microscopy. Proceedings of the National Academy of Sciences, 100(22), 12539-12542.

Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. (2010). Graphene-based antibacterial paper. ACS Nano, (4), 4317-4323.

Hu, W.; Peng, C.; Lv, M.; Li, X.; Zhang, Y.; Chen, N.; Fan, C.; Huang, Q. (2011). Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano, (5), 3693–3700.

Jastrzębska, A. M.; Kurtycz, P.; Olszyna, A. R. (2012). Recent advances in graphene family materials toxicity investigations. Journal of Nanoparticle Research, 14(12), 1-21.

Ji, H.; Sun, H.; Qu, X. (2016). Antibacterial application of graphene-based nanomaterials. Recent achievements and challenges. Advanced Drug Delivery Reviews. (http://dx.doi.org/10.1016/j.addr.2016.04.009)

Kang, S.; Herzberg, M.; Rodrigues, D. F.; Elimelech, M. (2008). Antibacterial Effects of Carbon Nanotubes: Size Does Matter. Langmuir, (24), 6409-6413.

Katsnelson, M. I.; Novoselov, K. S. (2007). Graphene: new bridge between condensed matter physics and quantum electrodynamics. Solid State Communications, (143), 3-13.

Khan, M. S.; Abdelhamid, H. N.; Wu, H. F. (2015). Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids and Surfaces B: Biointerfaces, (127), 281-291.

Krishnamoorthy, K.; Umasuthan, N.; Mohan, R.; Lee, J.; Kim, S. J. (2012). Antibacterial activity of graphene oxide nanosheets. Science of Advanced Materials, (4), 1111-1117.

Krishnamoorthy, K.; Veerapandian, M.; Zhang, L.; Yun, K.; Kim, S. J. (2012). Antibacterial efficiency of graphenenanosheet against pathogenic bacteria via lipid peroxidation. The Journal of Physical Chemistry C, (116), 17280-17287.

Li, Y.; Liu, Y.; Fu, Y.; Wei, T.; Le Guyader, L.; Gao, G.; Liu, R. S.; Chang, Y. Z.; Chen, C. (2012). The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials, (33), 402-411.

Li, Y.; Yuan, H.; Von demBussche, A.; Creighton, M.; Hurt, R. H.; Kane, A. B.; Gao, H. (2013). Graphenemicrosheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proceedings of the National Academy of Sciences of the USA, (110), 12295-12300.

Liu, S.; Hu, M.; Zeng, T. H.; Wu, R.; Jiang, R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. (2012). Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir, (28), 12364-12372.

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I.; Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, (306), 666-669.

Ohno, Y.; Maehashi, K.; Matsumoto, K. (2010). Label-free biosensors based on Aptamer-modified graphene field-effect transistors. Journal of the American Chemical Society, (132), 18012-18013.

Pan, Y.; Bao, H.; Sahoo, N. G.; Wu, T.; Li, L. (2011). Water-soluble poly(N-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Advanced Functional Materials, (21), 2754-2763.

Sant, S.; Sant, V. (2014). Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release, (173), 75-88.

Sasidharan, A.; Panchakarla, L. S.; Sadanandan, A. R.; Ashokan, A.; Chandran, P.; Girish, C. M.; Menon, D.; Nair, S. V.; Rao, C. N.; Koyakutty, M. (2012). Hemocompatibility and macrophage response of pristine and functionalized grapheme. Small, (8), 1251-1263.

Sawangphruk, M.; Srimuk, P.; Chiochan, P.; Sangsri, T.; Siwayaprahm, P. (2012). Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon, (50), 5156-5161.

Shang, N. G.; Papakonstantinou, P.; McMullan, M.; Chu, M.; Stramboulis, A.; Potenza, A. (coords) (2008). Catalyst-free efficient growth, orientation and biosensing properties of multilayer grapheme nanoflake films with sharp edge planes. Advanced Functional Materials, (18), 3506-3514.

Turcheniuk, K.; Hage, C. H.; Spadavecchia, J.; Serrano, A. Y.; Larroulet, I.; Pesquera, A.; Zurutuza, A.; Pisfil, M. G.; Heliot, L.; Boukaert, J.; Boukherroub, R.; Szunerits, S. (2015). Plasmonicphotothermal destruction of uropathogenic E-coli with reduced graphene oxide and core/shell nanocomposites of gold nanorods/reduced graphene oxide. Journal of Materials Chemistry B, (3), 375-386.

Veerapandian, M.; Zhang, L.; Krishnamoorthy, K.; Yun, K. (2013). Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials. Nanotechnology, 24(39), Artículo nº 395706.

Wang, Y. W.; Fu, Y. Y.; Wu, L. J.; Li, J.; Yang, H. H.; Chen, G. N. (2013). Targeted photothermal ablation of pathogenic bacterium, Staphylococcus aureus, with nanoscale reduced graphene oxide. Journal of Materials Chemistry B, (1), 2496-2501.

Zhang, Y. B.; Ali, S. F.; Dervishi, E.; Xu, Y.; Li, Z. R.; Casciano, D.; Biris, A. S. (2010). Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, (4), 3181-3186.

Zhou, M.; Zhai, Y.; Dong, S. (2009). Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry, (81), 5603-5613.

Zhou, H.; Zhao, K.; Li, W.; Yang, N.; Liu, Y.; Chen, C.; Wei, T. (2012). The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via TLR- and NF-kappaB-related signaling pathways. Biomaterials, (33), 6933-6942.

Cómo citar/How to cite

Cómo citar / How to cite

Gago, I.; Molina, I.; León, G.; Miguel, B. (2016). Introducción al estudio de las propiedades antibacterianas del grafeno. Revista de Pensamiento Estratégico y Seguridad CISDE, 1(2), 87-94.(www.cisdejournal.com)



Esta dirección de correo electrónico está protegida contra spambots. Usted necesita tener Javascript activado para poder verla.

Usted está aquí: Revista de Pensamiento Estratégico y Seguridad CISDE REVISTA Números Anteriores Uncategorised 2016 - Revista de Pensamiento Estratégico y Seguridad CISDE, 1 (2).