Analítica de enseñanza y aprendizaje en cursos de programación

Juan C. Fiallos Quinteros, Jovani A. Jiménez Builes, Jhon W. Branch Bedoya


La enseñanza de la programación requiere del desarrollo de habilidades cognitivas de alto orden, lo que exige un gran esfuerzo por parte de estudiantes y profesores. Las altas tasas de fracaso académico indican que es necesario tomar medidas para revertir esta situación. La analítica de la enseñanza y el aprendizaje proporciona métodos, procesos y técnicas que permiten mejorar la calidad del proceso educativo. La investigación presenta una revisión sistemática de estudios en los que se aplican técnicas, métodos o procesos de análisis de la enseñanza y el aprendizaje en cursos de programación inicial en el contexto de la educación superior. El objetivo principal es identificar las principales perspectivas y tendencias en la analítica de enseñanza y aprendizaje aplicada a la programación y posibles temas de investigación.

Texto completo:



Ahadi, A. (2016). Early identification of novice programmers' challenges in coding using machine learning techniques. In ICER 2016 - Proceedings of the 2016 ACM Conference on International Computing Education Research (pp. 263-264). doi:10.1145/2960310.2960339.

Amira, T.; Lamia, M.; Mohamed, H. (2018). A collaborative algorithmic problem-based learning environment using learners' learning styles. In ACM International Conference Proceeding Series. doi:10.1145/3227696.3227724.

Ayub, M.; Toba, H.; Wijanto, M. C.; Yong, S.; Wijaya, B. (2019). Gamification for blended learning in higher education. World Transactions on Engineering and Technology Education, 17(1), 76-81.

Ayub, M.; Toba, H.; Yong, S.; Wijanto, M. C. (2017). Modelling students' activities in programming subjects through educational data mining. Global Journal of Engineering Education, 19(3), 249-255.

Azcona, D.; Hsiao, I.-H.; Smeaton, A. F. (2019). Detecting students-at-risk in computer programming classes with learning analytics from students’ digital footprints. User Modeling and User-Adapted Interaction, 29(4), 759-788. doi:10.1007/s11257-019-09234-7.

Azcona, D.; Hsiao, I.-H.; Smeaton, A. F. (2019). Personalizing computer science education by leveraging multimodal learning analytics. In Proceedings - Frontiers in Education Conference, FIE. doi:10.1109/FIE.2018.8658596.

Azcona, D.; Hsiao, I.-H.; Arora, P.; Smeaton, A. (2019). User2Code2vec: Embeddings for profiling students based on distributional representations of source code. In ACM International Conference Proceeding Series (pp. 86-95). doi:10.1145/3303772.3303813.

Azcona, D.; Smeaton, A. F. (2017). Targeting at-risk students using engagement and effort predictors in an introductory computer programming course. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10474 LNCS (pp. 361-366). doi:10.1007/978-3-319-66610-5_27.

Badr, G.; Algobail, A.; Almutairi, H.; Almutery, M. (2016). Predicting Students' Performance in University Courses: A Case Study and Tool in KSU Mathematics Department. Procedia Computer Science, 82, 80-89. doi:10.1016/j.procs.2016.04.012.

Bai, Y.; Chen, L.; Yin, G.; Mao, X.; Deng, Y.; Wang, T.; Lu, Y.; Wang, H. (2017). Quantitative analysis of learning data in a programming course. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10179 LNCS (pp. 436-441). doi:10.1007/978-3-319-55705-2_37.

Casey, K.; Azcona, D. (2017). Utilizing student activity patterns to predict performance. International Journal of Educational Technology in Higher Education, 14(1). doi:10.1186/s41239-017-0044-3.

Costa, E. B.; Fonseca, B.; Santana, M. A.; de Araújo, F. F.; Rego, J. (2017). Evaluating the effectiveness of educational data mining techniques for early prediction of students’ academic failure in introductory programming courses. Computers in Human Behavior, 73, 247-256. doi:10.1016/j.chb.2017.01.047.

Chatti, M.; Dyckhoff, A.; Schroeder, U.; Thüs, H. (2012). A Reference Model for Learning Analytics. International Journal of Technology Enhanced Learning (IJTEL).

Chu, Q.; Yu, X.; Jiang, Y.; Wang, H. (2018). Data analysis of blended learning in python programming. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11336 LNCS (pp. 209-217). doi:10.1007/978-3-030-05057-3_16.

Ferreyra, M.; Avitabile, C.; Botero J.; Haimovich, F.; Urzúa, S. (2017). At a Crossroads Higher Education in Latin America and the Caribbean. International Bank for Reconstruction and Development / The World Bank. Washington, United States of America. doi:10.1596/978-1-4648-1014-5.

Fu, X.; Shimada, A.; Ogata, H.; Taniguchi, Y.; Suehiro, D. (2017). Real-time learning analytics for C programming language courses. In ACM International Conference Proceeding Series (pp. 280-288). doi:10.1145/3027385.3027407.

Gampa, R.; Baynes, A. (2019). Visual analytic workflow to understand students' performance in computer science courses. In Proceedings - Frontiers in Education Conference, FIE. doi:10.1109/FIE.2018.8658790.

Garbanzo, G. (2007). Factores asociados al rendimiento académico en estudiantes universitarios, una reflexión desde la calidad de la educación superior pública. Revista Educación, 31(1), 43-63.

Gil, D.; Fernández-Alemán, J. L.; Trujillo, J.; García-Mateos, G.; Luján-Mora, S.; Toval, A. (2018). The effect of green software: A study of impact factors on the correctness of software. Sustainability, 10(10), 3471. doi:10.3390/su10103471.

Gowan, A. M.; Hanna, P.; Greer, D.; Busch, J. (2018). Video makes the coding star?. In 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2018 - Proceedings (pp. 610-615). doi:10.23919/MIPRO.2018.8400115.

Gramoli, V.; Charleston, M.; Jeffries, B.; Radu, A.; Koprinska, I.; Viglas, A.; McGrane, M.; Yacef, K. (2016). Mining autograding data in computer science education. In ACM International Conference Proceeding Series. doi:10.1145/2843043.2843070.

Greller, W.; Drachsler, H. (2012). Translating learning into numbers: A generic framework for learning analytics. Educational Technology and Society, 15(3), 42-57.

Guerrero-Higueras, Á. M.; DeCastro-García, N.; Conde, M. Á.; Matellán, V. (2018) Predictive models of academic success: A case study with version control systems. In ACM International Conference Proceeding Series (pp. 306-312). doi:10.1145/3284179.3284235.

Guerrero-Higueras, Á. M.; Matellán-Olivera, V.; Costales, G. E.; Fernández-Llamas, C.; Rodríguez-Sedano, F. J.; Conde, M. Á. (2018). Model for evaluating student performance through their interaction with version control systems. CEUR Workshop Proceedings, 2188, 104-112.

Hao, Q.; Galyardt, A.; Barnes, B.; Branch, R. M.; Wright, E. (2019). Automatic identification of ineffective online student questions in computing education. In Proceedings - Frontiers in Education Conference, FIE. doi:10.1109/FIE.2018.8658642.

Hrženjak, M. P.; Matetić, M.; Bakarić, M. B. (2015). Mining association rules in learning management systems. In 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2015 - Proceedings. doi:10.1109/MIPRO.2015.7160418.

Hunter, G.; Livingstone, D.; Neve, P.; Alsop, G. (2013). Learn Programming++: The Design, Implementation and Deployment of an Intelligent Environment for the Teaching and Learning of Computer Programming. In Proceedings - 9th International Conference on Intelligent Environments, IE 2013, art. no. 6597801 (pp. 129-136). doi:10.1109/IE.2013.46.

Infante-Moro, A.; Infante-Moro, J. C.; Gallardo-Pérez, J. (2020a). Key factors in the implementation of Cloud Computing as a service and communication tool in universities. In Eighth International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 631-636). New York, NY, USA: ACM International Conference Proceeding Series. doi:10.1145/3434780.3436698.

Infante-Moro, A.; Infante-Moro, J. C.; Gallardo-Pérez, J. (2020b). Las posibilidades de empleo del Internet de las Cosas en el sector hotelero y sus necesidades formativas. Education in the knowledge society, (21), 14. doi:10.14201/eks.22777.

Infante-Moro, A.; Infante-Moro, J. C.; Gallardo-Pérez, J. (2021a). Análisis de las competencias digitales en el Máster de Turismo de la Universidad de Huelva. Campus Virtuales, 10(2), 141-151.

Infante-Moro, A.; Infante-Moro, J. C.; Gallardo-Pérez, J.; Luque-de la Rosa, A. (2021b). Motivational Factors in the Use of Videoconferences to Carry out Tutorials in Spanish Universities in the Post-Pandemic Period. International Journal of Environmental Research and Public Health, 18(19), 10474. doi:10.3390/ijerph181910474.

Ishizue, R.; Sakamoto, K.; Washizaki, H.; Fukazawa, Y. (2018). Student placement and skill ranking predictors for programming classes using class attitude, psychological scales, and code metrics. Research and Practice in Technology Enhanced Learning, 13(1), 7. doi:10.1186/s41039-018-0075-y.

Knight, S.; Buckingham Shum, S. (2017). Theory and Learning Analytics. In C. Lang, G. Siemens, A. F. Wise, & D. Gaevic (Eds.), The Handbook of Learning Analytics (pp. 17-22).

Knight, S.; Shum, S. B.; Littleton, K. (2014). Epistemology, Assessment, Pedagogy: Where Learning Meets Analytics in the Middle Space. Journal of Learning Analytics, 1(2), 23-47.

Krauss, C.; Merceron, A.; An, T.-S.; Zwicklbauer, M.; Steglich, S.; Arbanowski, S. (2017). Teaching advanced web technologies with a mobile learning companion application. In ACM International Conference Proceeding Series. doi:10.1145/3136907.3136937.

Laakso, M.-J.; Kaila, E.; Rajala, T. (2018). ViLLE – collaborative education tool: Designing and utilizing an exercise-based learning environment. Education and Information Technologies, 23(4), 1655-1676. doi:10.1007/s10639-017-9659-1.

Lang, C.; Siemens, G.; Wise, A. F.; Gaevic, D. (2017). The Handbook of Learning Analytics. Society for Learning Analytics Research (SoLAR), Alberta, Canada, 1 edition.

Larenas, F.; Marín, B.; Giachetti, G. (2018). Classutopia: A serious game for conceptual modeling design. In Proceedings of the International Conference on Software Engineering and Knowledge Engineering, SEKE (pp. 116-121). doi:10.18293/SEKE2018-145.

Leony, D.; Muñoz-Merino, P. J.; Pardo, A.; Kloos, C. D. (2013). Provision of awareness of learners' emotions through visualizations in a computer interaction-based environment. Expert Systems with Applications, 40(13), 5093-5100. doi:10.1016/j.eswa.2013.03.030.

Matetic, M. (2019). Mining learning management system data using interpretable neural networks. In 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2019 – Proceedings (pp. 1282-1287). doi:10.23919/MIPRO.2019.8757113.

Matetic, M.; Bakaric, M. B.; Sisovic, S. (2015). Association rule mining and visualization of introductory programming course activities. In ACM International Conference Proceeding Series (pp. 374-381). doi:10.1145/2812428.2812438.

Matthew, F. T.; Adepoju, A. I.; Ayodele, O.; Olumide, O.; Olatayo, O.; Adebimpe, E.; Bolaji, O.; Funmilola, E. (2018). Development of mobile-interfaced machine learning-based predictive models for improving students' performance in programming courses. International Journal of Advanced Computer Science and Applications, 9(5), 105-115. doi:10.14569/IJACSA.2018.090514.

Matsuzawa, Y.; Tanaka, Y.; Kitani, T.; Sakai, S. (2017). A demonstration of evidence-based action research using information dashboard in introductory programming education. IFIP Advances in Information and Communication Technology, 515, 619-629. doi:10.1007/978-3-319-74310-3_62.

McGowan, A.; Hanna, P.; Anderson, N. (2016). Teaching programming - Understanding lecture capture youtube analytics. In Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE (pp. 35-40). doi:10.1145/2899415.2899421.

Ministerio de Educación Nacional Colombia (2012). Educación Superior. Boletín No. 19 Calidad de la Educación Superior. El camino a la prosperidad. Bogotá, Colombia

Mohamad, F. S.; Mumtazimah, M.; Fadzli, S. A. (2013). Integrating an e-learning model using IRT, Felder-Silverman and neural network approach. In 2013 2nd International Conference on Informatics and Applications, ICIA 2013 (pp. 207-211). doi:10.1109/ICoIA.2013.6650257.

Mora García, R. T. (2015). Factors involved in university academic performance: A case study. [Factores que intervienen en el rendimiento académico universitario: Un estudio de caso]. Opcion, 31(Special Issue 6), 1041-1063.

Morales Salas, R. E.; Infante-Moro, J. C.; Gallardo-Pérez, J. (2019). La mediación e interacción en un AVA para la gestión eficaz en el aprendizaje virtual. Campus Virtuales, 8(1), 49-61.

Moretti, A.; González-Brenes, J. P.; McKnight, K. (2014). Mining the web to leverage collective intelligence and learn student preferences. CEUR Workshop Proceedings, 1183, 100-106.

Mortenson, M.; Doherty, N.; Robinson, S. (2014). Operational research from Taylorism to Terabytes: A research agenda for the analytics age. School of Business and Economics, Loughborough University, Loughborough, Leicestershire, United Kingdom.

Ott, C.; Robins, A.; Haden, P.; Shephard, K. (2015). Illustrating performance indicators and course characteristics to support students’ self-regulated learning in CS1. Computer Science Education, 25(2), 174-198. doi:10.1080/08993408.2015.1033129.

Peña-Ayala, A. (2018). Learning analytics: A glance of evolution, status, and trends according to a proposed taxonomy. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(3). doi:10.1002/widm.1243.

Pereira, J. (2016). Leveraging chatbots to improve self-guided learning through conversational quizzes. In ACM International Conference Proceeding Series (pp. 911-918). doi:10.1145/3012430.3012625.

Petit, J.; Roura, S.; Carmona, J.; Cortadella, J.; Duch, J.; Giménez, O.; Mani, A.; Mas, J.; Rodríguez-Carbonell, E.; Rubio, E.; De San Pedro, E.; Venkataramani, D. (2018). Characteristics and Experiences. IEEE Transactions on Learning Technologies, 11(3), 321-333. doi:10.1109/TLT.2017.2723389.

Petkovic, D.; Sosnick-Perez, M.; Huang, S.; Todtenhoefer, R.; Okada, K.; Arora, S.; Sreenivasen, R.; Flores, L.; Dubey, S. (2015). SETAP: Software engineering teamwork assessment and prediction using machine learning. In Proceedings - Frontiers in Education Conference, FIE. doi:10.1109/FIE.2014.7044199.

Pineda, A. F.; Cadavid, J. M. (2019). Traceability of learning activities in computer programming courses using an automatic online judge within an LMS [Trazabilidad de actividades de aprendizaje en cursos de programación de computadores usando un juez automático en línea dentro de un LMS]. CEUR Workshop Proceedings, 2425, 122-131.

Priss, U. (2013). Using FCA to analyse how students learn to program. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7880 LNAI, 216-227. doi:10.1007/978-3-642-38317-5_14.

Romero, C.; López, M.-I.; Luna, J.-M.; Ventura, S. (2013). Predicting students' final performance from participation in on-line discussion forums. Computers and Education, 68, 458-472. doi:10.1016/j.compedu.2013.06.009.

Rubio, M. A. (2020). Automatic Categorization of Introductory Programming Students. Advances in Intelligent Systems and Computing, 951, 302-311. doi:10.1007/978-3-030-20005-3_31.

Ruiz-Fernández, M.; Ortega, G.; Roca-Piera, J. (2018). Learning analytics and evaluative mentoring to increase the students' performance in computer science. In IEEE Global Engineering Education Conference, EDUCON (pp. 1297-1304). doi:10.1109/EDUCON.2018.8363379.

Sagar, M.; Gupta, A.; Kaushal, R. (2016). Performance prediction and behavioral analysis of student programming ability. In 2016 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2016 (pp. 1039-1045). doi:10.1109/ICACCI.2016.7732181.

Sergis, S.; Sampson D. G. (2017). Teaching and Learning Analytics to Support Teacher Inquiry: A Systematic Literature Review. In A. Peña-Ayala (Ed.), Learning Analytics: Fundaments, Applications, and Trends. Studies in Systems, Decision and Control. Springer, Cham.

Shih, W.-C. (2018). Mining Sequential Patterns to Explore Users' Learning Behavior in a Visual Programming App. In Proceedings - International Computer Software and Applications Conference (pp. 126-129). doi:10.1109/COMPSAC.2018.10216.

Shih, W.-C. (2017). Mining Learners' Behavioral Sequential Patterns in a Blockly Visual Programming Educational Game. In 2017 International Conference on Industrial Engineering, Management Science and Application, ICIMSA 2017. doi:10.1109/ICIMSA.2017.7985594.

Su, Y.-S.; Ding, T.-J.; Lai, C.-F. (2017). Analysis of students engagement and learning performance in a social community supported computer programming course. Eurasia Journal of Mathematics, Science and Technology Education, 13(9), 6189-6201. doi:10.12973/eurasia.2017.01058a.

Sun, Q.; Wu, J.; Rong, W.; Liu, W. (2019). Formative assessment of programming language learning based on peer code review: Implementation and experience report. Tsinghua Science and Technology, 24(4), 423-434. doi:10.26599/TST.2018.9010109.

Tama, B. A.; Rhee, K.-H. (2018). A comparative study of classifier ensembles for detecting inactive learner in university. International Journal of Data Analysis Techniques and Strategies, 10(4), 351-368. doi:10.1504/IJDATS.2018.095216.

Tarmazdi, H.; Vivian, R.; Szabo, C.; Falkner, K.; Falkner, N. (2015). Using learning analytics to visualise computer science teamwork. In Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE (pp. 165-170). doi:10.1145/2729094.2742613.

Ullah, F.; Wang, J.; Farhan, M.; Jabbar, S.; Wu, Z.; Khalid, S. (2018). Plagiarism detection in students’ programming assignments based on semantics: multimedia e-learning based smart assessment methodology. Multimedia Tools and Applications. doi:10.1007/s11042-018-5827-6.

Wang, L. (2016) Network teaching system based on a clustering analysis algorithm. World Transactions on Engineering and Technology Education, 14(1), 179-183.

Watson, C.; Li, F. W. B. (2014). Failure rates in introductory programming revisited. In ITICSE 2014 - Proceedings of the 2014 Innovation and Technology in Computer Science Education Conference (pp. 39-44). doi:10.1145/2591708.2591749.

Watson, C.; Li, F. W. B.; Godwin, J. L. (2013). Predicting performance in an introductory programming course by logging and analyzing student programming behavior. In Proceedings - 2013 IEEE 13th International Conference on Advanced Learning Technologies, ICALT 2013 (pp. 319-323). doi:10.1109/ICALT.2013.99.

Yoo, J.; Kim, J. (2014). Can online discussion participation predict group project performance? Investigating the roles of linguistic features and participation patterns. International Journal of Artificial Intelligence in Education, 24(1), 8-32. doi:10.1007/s40593-013-0010-8.


Enlaces refback

  • No hay ningún enlace refback.

Campus Virtuales

ISSN: 2255-1514