Armas de energía dirigida: del mito a la realidad

César Pintado Rodríguez

Resumen


Básicamente podemos definir las armas de energía dirigida como aquellas capaces de transmitir energía en una dirección concreta sin usar un proyectil. Dichas armas pueden clasificarse en función del tipo de energía transmitida, encontrando por una parte las que emplean ondas electromagnéticas, partículas atómicas o subatómicas.


A día de hoy, la mayoría de los esfuerzos se dirigen al desarrollo de los láseres de alta energía y las microondas de alta potencia. Si bien las primeras acumularon fallos iniciales y su desarrollo se centra de momento en la autoprotección contra ataques de baja intensidad, ambas presentan suficientes avances para contemplar su uso operativo.


Cabría esperar que en este tipo de armas, dadas sus enormes necesidades de inversión, investigación y desarrollo, sería Estados Unidos quien llevase la delantera. Sin embargo, la realidad es más compleja y la trayectoria de las armas de energía dirigida ha sido un largo camino de prioridades cambiantes, proyectos fallidos e innovaciones tecnológicas que han abierto otras posibilidades.


Texto completo:

PDF

Referencias


Abrams, M. (2003). The Dawn of the E-Bomb. IEEE Spectrum. (http://spectrum.ieee.org/biomedical/devices/the-dawn-of-the-ebomb)

Axe, D. (2012). New Air Force Missile Turns Out Lights With Raytheon Microwave Tech. BreakingDefense.com. (http:// breakingdefense.com/2012/10/new-air-force-missile-turns-out-lights- with-raytheon-microwave-t/)

Beidel, E. (2014). All Systems Go: Navy’s Laser Weapon Ready for Summer Deployment. Office of Naval Research. (http://www.onr. navy.mil/Media-Center/Press-Releases/2014/Laser-Weapon-Ready-For- Deployment.aspx)

Brimley, S.; Fitzgerald, B.; Sayler, K. (2013). Game Changers: Disruptive Technology and U.S. Defense Strategy. Center for a New American Security.

Charette, R. (2012). E-Bombs: What is the Threat?. IEEE Spectrum. (http://spectrum.ieee.org/riskfactor/aerospace/military/ebombs-what-is-the-threat)

Department of Defense (2007). Defense Science Board Task Force on Directed Energy Weapons.

DoD (2014). DoD. (http://comptroller.defense.gov/budgetmaterials.aspx)

Dunn (2010). Operational Implications of Laser Weapons.

Ehrhard, T.; Krepinevich, A.; Watts, B. (2009). Near-Term Prospects for Battlefield Directed-Energy Weapons. Center for Strategic and Budgetary Assessments.

Freedberg, S. J. (2014). US Has Lost ‘Dominance In Electromagnetic Spectrum’: Shaffer. BreakingDefense.com.

Glenn Research Center (2015). National Aeronautics and Space Administration. Switchboard in the Sky.

Grueber, M. (2013). 2014 Global R&D Funding Forecast. Battelle.

Grünschläger, G. R. (2016). ESGN Nº 62. Diciembre de 2016

Gunzinger, M.; Dougherty, C. (2012). Changing the Game: The Promise of Directed-Energy Weapons. Center for Strategic and Budgetary Assessments.

Hlad, J. (2012). $120 million heat ray waiting for first action. Stars and Stripes. (http://www.stripes.com/blogs/stripes-central/stripes-central-1.8040/120-million-heat-ray-waiting-for-first-action-1.171170)

Katt, R. J. (2010). Selected Directed Energy Research and Development for U.S. Air Force Aircraft Applications: A Workshop Summary (Washington: National Research Council, 2013), 21.

Klunder, M. L. (2014). Rear Admiral. Chief of Naval Research, statement before the Subcommittee on Intelligence, Emerging Threats and Capabilities, Armed Services Committee, U.S. House of Representatives, March 26.

Kopp, C. (1996). The Electromagnetic Bomb — a Weapon of Electrical Mass Destruction. Air & Space Power Journal. (http://www.ausairpower.net/ ASPC-E-Bomb-Mirror.html)

Kopp, C. (2015). Exponential Growth Laws in Basic Technology and Capability Surprise.

Larter, D. (2014). Navy’s First Laser Gun Shines in Deployed Exercises. Defense News. (http://www.defensenews.com/article/20141211/)

Majumdar, D. (2013). Air Force Seeks Laser Weapons for Next Generation Fighters. news.usni.org. (http://news.usni.org/2013/11/20/air-force-seeks-laser-weapons-next-generation-fighters)

Mcaulay, A. D. (2011). Military Laser Technology for Defense: Technology for Revolutionizing 21st Century Warfare. Hoboken, NJ: John P. Wiley & Sons.

Moran, S. (2015). Historical Overview of Directed-Energy Work at Dahlgren. Leading Edge.

Nelson, S. D.; Anderson, R. A. (1997). EM Field and Instrumentation Diagnostics in Support of the LFT&E HPM Methodology Testing. UCRL-ID-128420. Lawrence Livermore National Laboratory.

O’rourke, R. (2010). Navy Shipboard Lasers for Surface, Air, and Missile Defense: Background and Issues for Congress. Washington, D.C.: Congressional Research Service.

Olson, M. (2015). History of Laser Weapon Research. Leading Edge.

Ruiz Domínguez, F. (2016). DOIEEE 12/16. Armas de Energía Dirigida.

Sánchez-Rubio, A. (2014). Wavelength Beam Combining for Power and Brightness Scaling of Laser Systems. Lincoln Laboratory Journal.

Scott, R. (2014). HIS Jane´s Defence Weekly, 07/08/14. Flash to Ban.

Shaffer, A. R. (2014). Principal Deputy, Assistant Secretary of Defense for Defense Research and Engineering, statement testimony before the Subcommittee on Emerging Threats and Capabilities, Committee on Armed Services, U.S. Senate, April 8, 2014.

Technical Support Working Group and Directed Energy Technology Office (2005). The Threat of Radio Frequency Weapons to Critical Infrastructure Facilities.

Ullrich, G. W. (2011). The E-Bomb: Urban Threat or Urban Legend?. In Defense Threat Reduction Agency, Revolutions in Science and Technology: Future Threats to U.S. National Security, ASCO 2011 014 (April 2011).

Wales, B. (2012). Declaración ante el Subcomité de Ciberseguridad, Protección de Infraestructuras y Tecnologías de Seguridad. Comité de Seguridad Interna, US House of Representatives, 12 de Septiembre de 2012.


Enlaces refback

  • No hay ningún enlace refback.


Revista de Pensamiento Estratégico y Seguridad CISDE

ISSN: 2529-8763

www.uajournals.com/cisdejournal

cisdejournal@uajournals.com