Campus Virtuales

Campus Virtuales (Vol. III, Num. 02)

Número completo
Full number

 

 

 

 

 

 

 

 

 

 


Revisión de Operadores de Agregación
Aggregation Operators Review

David Luis La Red Martínez. (Argentina)

Julio César Acosta. (Argentina)

Número completo
Full number

 

 

 

 

 

 

 

 

 

 


Revisión de Operadores de Agregación
Aggregation Operators Review

David Luis La Red Martínez. (Argentina)

Julio César Acosta. (Argentina)

Resumen/Abstract

Resumen / Abstract


Un problema que el ser humano debe afrontar muy habitualmente es el de tener que agregar, fundir o sintetizar información, esto es, combinar entre sí una serie de datos, procedentes de fuentes diversas, para llegar a una cierta conclusión o tomar una determinada decisión, esto supone el uso de uno o varios operadores de agregación capaces de proporcionar una relación de preferencia colectiva. Estos operadores se deben elegir según criterios específicos teniendo en cuenta las propiedades características de cada operador. En este trabajo se presenta una revisión de estos temas.

A problem that humans must face very often is that of having to add, melt or synthesize information, i.e. combined a series of data, from various sources, to reach a certain conclusion or make a certain decision, this implies the use of one or more aggregation operators capable of providing a collective preference relation. These operators must be chosen according to specific criteria taking into account the characteristics of each operator. This paper presents a review of these issues.

Palabras Clave/Keywords

Palabras Clave / Keywords


Agregación, Operadores de agregación, Medidas de comportamiento de los operadores de agregación, t-normas, t-conormas, Operadores de promedio.

Aggregation, Aggregation operators, Behavioral measures of aggregation operators, t-norms, t-conorms, Average operators.

Referencias/References

Referencias / References


Aczél, J. (1966). Lectures on Functional Equations and their Applications. Academic Press. New York. USA.

Alsina, C.; Mayor, G.; Tomás, M. S. & Torrens, J. (1993). A characterization of a class of aggregation functions. Fuzzy Sets and Systems 53. 33-38.

Alsina, C.; Trillas, E. & Valverde, L. (1980). Sobre conectivos lógicos no distributivos para la teoría de los conjuntos borrosos. Pub. Mat. UAB 20. 69-72.

Alsina, C.; Trillas, E. & Valverde, L. (1983). On non-distributive logical connectives for fuzzy sets theory. Busefal 3. 18-29.

Alsina, C.; Trillas, E. & Valverde, L. (1983a). On some logical connectives for fuzzy sets theory. Journal of Mathematical Analysis and Applications. Vol. 93 (1). 15-26.

Bellman, R. & Giertz, M. (1973). On the analytic formalism of the theory of fuzzy sets. Inform. Sci. 5. 149-156.

Bouchon-Meunier, B. (editor). (1998). Aggregation and Fusion of Imperfect Information. Studies in Fuzziness and Soft Computing. Vol. 12. Physica-Verlag.

Calvo, T. & Mesiar, R. (2003a). Weighted triangular norms-based aggregation operators. Fuzzy Sets and Systems, 137. pp. 3-10.

Calvo, T. & Mesiar, R. (2003b). Aggregation operators: ordering and bounds. Fuzzy Sets and Systems, 139. pp. 685-697.

Canós Darós, L. & Liern Carrión, V. (2006). La Agregación de Información Para la Toma de Decisiones en la Empresa. XIV Jornadas de ASEPUMA y II Encuentro Internacional. Universidad de Extremadura. España.

Carlsson, C. H. & Fuller, R. (2002). Fuzzy reasoning in decision making and optimization. Heidelberg: Springfield-Verlag.

Cubillo, S; Pradera, A. & Trillas, E. (1998). On Joining Operators and their and / or Behaviour. Proc. International Conference IPMU'98. 673-679. París. Francia.

De Soto, A. R. & Trillas, E. (1998). Agregación de intervalos borrosos mediante el principio de extensión. Actas del VIII Congreso Español sobre Tecnologías y Lógica Fuzzy, Pamplona. España. 233-237.

Dombi, J. (1982). Basic concepts for a theory of evaluation: The aggregative operator. European J. Oper. Res. 10. 282-293.

Doña Fernández, J. M. (2008). Modelado de los procesos de toma de decisión en entornos sociales mediante operadores de agregación OWA. Tesis doctoral. Universidad de Málaga. España.

Doña, J. M.; Gil, A. M.; La Red, D. L. & Peláez, J. I. (2011). A System Based on the Concept of Linguistic Majority for the Companies Valuation. EconoQuantum. Vol. 8 N. 2. Guadalajara. México. 121-142.

Dubois, D. (1983). Modèles mathématiques de l' imprécis et de l’ incertain en vue d' applications aux techniques d' aide à la décision. Tesis Doctoral. Université Scientifique et Médicale de Grenoble.

Dubois, D. & Prade, H. (1985). A Review of Fuzzy Set Aggregation Connectives. Information Sciences 36. 85-121.

Dubois, D. & Prade, H. (1986). Weighted minimum and maximum operations in fuzzy set theory. Information Sciences 39. 205-210.

Dujmovié, J. J. (2012). Andness and Orsess as a Mean of Overall Importance. In: Proceedings of the IEEE World Congress on Computational Intelligence, Brisbane, Australia, June 10-15, pp. 83-88.

Dujmovié, J. J. & De Tré, G. (2011). Multicriteria Methods and Logic Aggregation in Suitability Maps. International Journal of Intelligent Systems 26 (10), 971-1001.

Dyckhoff, H. & Pedrycz, W. (1984). Generalized Means as Model of Compensative Operators. Fuzzy Sets and Systems 14. 143-154.

Fernández-Salido, J. M. & Murakami, S. (2003). Extending Yager’s orness concept for the OWA aggregators to other mean operators. Fuzzy Sets and Systems, 139. pp. 515-542.

Filev, D. & Yager, R. R. (1998). On the issue of obtaining OWA operators weights. Fuzzy Sets and Systems 94. 157-169.

Fodor, J. (2004). Left-continuous t-norms in fuzzy logic: An Overview. Acta Polytechnica Hungarica. Journal of Applied Sciences, Budapest, Hungary, 1 (2), ISSN 1785-8860.

Fodor, J. & Calvo, T. (1998). Aggregation Functions Defined by t-Norms and t-Conorms. En Bouchon-Meunier, B. (editor). Aggregation and Fusion of Imperfect Information. Studies in Fuzziness and Soft Computing. Vol. 12. Physica-Verlag. 36-48.

Fodor, J. C.; Marichal, J. L. & Roubens, M. (1995). Characterization of some aggregation functions arising from MCDM problems, en Bouchonmeunier, B.; Yager, R. R. & Zadeh, L. A. (eds.). Fuzzy logic and soft computing. Series: Advances in fuzzy systems-Applications and theory, 4. World Scientific Singapore. pp. 194-201.

Fodor, J. & Roubens, M. (1995b). On meaningfulness of means. Journal of Computational and Applied Mathematics. 103-115.

Fodor, J.; Yager, R. R. & Rybalov, A. (1997). Structure of Uninorms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 411-427.

Frank, M. J. (1979). On the simultaneous associativity of F(x,y) and x + y - F(x,y). Aequationes Mathematicae 19 (2-3). 194-226.

Grabisch, M. (1995). Fuzzy Integral in multicriteria decisión making. Fuzzy Sets and Systems 69. 279-298.

Grabisch, M. (1996). Fuzzy measures and integrals: a survey of applications and recent issues. En Dubois, D.; Prade, H. & Yager, R. (editors). Fuzzy Sets Methods in Information Engineering: a Guided Tour of Applications. J. Wiley & Sons.

Grabisch, M. (1998). Fuzzy Integral as a Flexible and Interpretable Tool of Aggregation. En Bouchon-Meunier, B. (editor): Aggregation and Fusion of Imperfect Information. Studies in Fuzziness and Soft Computing. Vol. 12. Physica-Verlag. 51-72.

Gupta, M. M. & Qi, J. (1991). Theory of t-norms and fuzzy inference methods. Fuzzy Sets and Systems 40 (3). 431-450.

Herrera, F.; Herrera-Viedma, E. & Chiclana, F. (2003). A study of the origin and uses of the ordered weighted geometric operator in multicriteria decision making. International Journal of Intelligent Systems 18. 689-707.

Herrera, F.; Herrera-Viedma, E. & Verdegay, J. L. (1996b). Direct approach processes in group decision making using linguistic OWA operators. Fuzzy Sets and Systems, 79, pp. 175-190.

Klement, E.; Mesiar, R. & Pap, E. (1996). On the relationship of associative compensatory operators to triangular norms and conorms. Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. Vol. 4, No. 2. 129-144.

Klir, G. & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice Hall PTR.

Legind Larsen, H. (2002). Efficient importance weighted aggregation between min and max. 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’2002). Annecy. Francia.

Ling, C. H. (1965). Representation of Associative Functions. Publ. Math. Debrecen 12. 189-212.

Liu, X. W. (2006). Some properties of the weighted OWA operator. IEEE Transactions on Systems, Man and Cybernetics, 36, 1. 118-127.

Llamazares, B. (2007). Choosing OWA operator weights in the field of Social Choice. Information Sciences: an International Journal. 177, 21. 4745-4756.

Luhandjula, M. K. (1982). Compensatory operators in fuzzy linear programming with multiple objectives. Fuzzy Sets and Systems 8. 245-252.

Marimin, M.; Umano, M.; Hatono, I. & Tamura, H. (1998). Linguistic Labels for Expressing Fuzzy Preference Relations in Fuzzy Group Decision Making. IEEE Transactions on Systems, Man, and Cybernetics. 28(2): 205-218.

Mayor, G. (1984). Contribució a l' estudi de models matemàtics per a la lógica de la vaguetat. Tesis Doctoral. Universitat de les Illes Balears. España.

Mayor, G. (1984a). Sobre una classe d'operacions entre conjunts difusos: Operacions d'Agregació. Congrés Català de Lógica Matemàtica. Barcelona. España. 95-97.

Mayor, G. & Calvo, T. (1997). On extended Aggregation Functions. Proc. IFSA'97. Praga. 281-285.

Mayor, G. & Martín, J. (1998). Funciones de agregación localmente internas. Actas del VIH Congreso Español sobre Tecnologías y Lógica Fuzzy. Pamplona. 355-359.

Mayor, G.; Suñer, J. & Canet, P. (1998). Agregación multidimensional de números borrosos. Actas del VIH Congreso Español sobre Tecnologías y Lógica Fuzzy. Pamplona. España. 171-178.

Mayor, G. & Torrens, J. (1988). On a class of binary operations: non-strict Archimedean aggregation functions.Proc. 18th ISMVL, Palma de Mallorca. España. 54-59.

Mayor, G. & Trillas, E. (1986). On the representation of some aggregation functions. Proc. 16th ISMVL, Blacksburg, VA. 110-114.

Merigó, J. M.; Casanovas, M.; Martínez, L. (2010). Linguistic aggregation operators for linguistic decision making based on the Dempster-Shafer theory of evidence. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18, 287-304.

Mesiar, R. & Komorníková, M. (1998). Triangular Norm-Based Aggregation of Evidence under Fuzziness. En Bouchon-Meunier, B. (editor): Aggregation and Fusion of Imperfect Information. Studies in Fuzziness and Soft Computing. Vol. 12. Physica-Verlag. 11-35.

Mizumoto, M. (1989). Pictorial Representations of Fuzzy Connectives. Part II: cases of. compensatory operators and self-dual operators. Fuzzy Sets and Systems 32. 45-79.

Nguyen, H.T.; Kreinovich, V. & Tolbert, D. (1994). A measure of average sensitivity for fuzzy logics. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. Vol. 2, No. 4. 361-375.

Nguyen, H. T. & Walker, E. A. (1997). A First Course in Fuzzy Logic. CRC Press.

O’Hagan, M. (1988). Aggregating template rule antecedents in real-time expert systems with fuzzy set logic. Proc. 22nd Annual IEEE Asilomar Conf. On Signals, Systems and Computers, Pacific Grove, CA.

Ovchinnikov, S. (1996). Means on ordered sets. Mathematical Social Sciences 32. 39-56.

Ovchinnikov, S. (1998). An Analytic Characterization of Some Aggregation Operators. International Journal of Intelligent Systems. Vol. 13. 59-68.

Peláez, J. I. & Doña, J. M. (2003). LAMA: A Linguistic Aggregation of Majority Additive Operator, International Journal of Intelligent Systems 18, 809-820.

Peláez, J. I. & Doña, J. M. (2003a). Majority Additive-Ordered Weighting Averaging: A New Neat Ordered Weighting Averaging Operators Based on the Majority Process, International Journal of Intelligent Systems 18. 469-481.

Peláez, J. I. & Doña, J. M. (2006). A majority model in group decision making using QMA-OWA operators. Int. J. Intell. Syst. 21. 193-208.

Peláez, J. I.; Doña, J. M. & Gil, A. M. (2006). Application of Majority OWA operators in Strategic Valuation of Companies. Proc Int. Eurofuse Workshop. New Trends in Preference Modelling.

Peláez, J. I., Doña, J. M. & Gómez-Ruiz, J. A. (2007). Analysis of OWA Operators in Decision Making for Modelling the Mayority Concept. Applied Mathematics and Computation. Vol. 186. Pages 1263-1275.

Peláez, J. I.; Doña, J. M. & La Red, D. L. (2003). Analysis of the Majority Process in Group Decision Making Process; JCIS 2003 (7th Joint Conference on Information Sciences); ISBN N° 0-9707890-2-5; Proceedings, págs. 155-159; North Carolina; USA.

Peláez, J. I.; Doña, J. M. & La Red, D. L. (2003a). Analysis of the Lingüistic Aggregation Operator LAMA in Group Decision Making Process; 32 JAIIO (Argentine Conference on Computer Science and Operational Research) – ASAI 2003 (Argentine Symposium on Artificial Intelligence); ISSN N° 1666-1079; Argentina.

Peláez, J. I.; Doña, J. M. & La Red, D. L. (2008). Fuzzy Imputation Methods for DataBase Systems. Handbook of Research on Fuzzy Information Processing in Database. Hershey, PA, USA: Information Science Reference.

Peláez, J. I.; Doña, J. M., La Red, D. L., Mesas, A. (2004). OWA Aggregation with Soft Majority Operators; 33 JAIIO (33° Jornadas Argentinas de Informática e Investigación Operativa) – ASIS 2004 (Primer Simposio Argentino de Sistemas de Información); Anales 2004 (publicación electrónica en CD); ISSN N° 1666-1141; Argentina.

Peláez, J. I.; Doña, J. M. & Mesas, A. (2005). Majority multiplicative ordered weighting geometric operators and their use in the aggregation of multiplicative preference relations. Mathware and Soft Computing. 12. 107-120.

Peláez, J. I.; Doña, J. M.; Mesas, A.& La Red, D. L. (2004). Opinión de Mayoría en Toma de Decisiones en Grupo Mediante el Operador QMA-OWA; ESTYLF 2004 (XII Congreso Español Sobre Tecnologías y Lógica Fuzzy); Libro de Actas, págs. 449-454; ISBN N° 84-609-2160-3; España.

Pradera Gómez, A. (1999). Contribución al Estudio de la Agregación de Información en un Entorno Borroso. Tesis Doctoral. Universidad Politécnica de Madrid.

Ralescu, A. L. & Ralescu, D. A. (1997). Extensions of fuzzy aggregation. Fuzzy Sets and Systems 86. 321-330.

Shannon, C. E. & Weaver, W. (1949). A mathematical theory of communication. University of Illinois Press. Urbana.

Schweizer, B. & Sklar, A. (1961). Associative functions and statistical triangle semigroups. Publ. Math. Debrecen 8. 169-186.

Silvert, W. (1979). Symmetric summation: A class of operations on fuzzy sets. IEEE Trans. Systems, Man Cybernet. 9. 659-667.

Smolíkova, R. & Wachowiak, M. P. (2002). Aggregation operators for selection problems. Fuzzy Sets and Systems, 131. pp. 23-24.

Torra, V. (1997). The Weighted OWA Operator. International Journal of Intelligent Systems. 12. 153-166.

Trillas, E.; Cubillo, S. & Castro, J. L. (1995). Conjunction and disjunction on ([0,1], ≤). Fuzzy Sets and Systems 72. 155-165.

Trillas, E.; Pradera, A. & Cubillo, S. (1999). A mathematical model for fuzzy connectives and its application to operator's behavioural study. En Bouchon-Meunier, B.; Yager, R. R. & Zadeh, L. A. (eds): Information, Uncertainty, Fusion. Kluwer Scientific Publishers.

Turksen, I. B. (1986). Interval-valued fuzzy sets based on normal forms. Fuzzy Sets and Systems 20. 191-210.

Yager, R. R. (1988). On Ordered Weighted Averaging Operators in Multicriteria Decisionmaking. IEEE Transactions on Systems, Man and Cybernetics 18. 183-190.

Yager, R. R. (1993). Families of OWA operators, Fuzzy Sets and Systems, 59. 125-148.

Yager, R. R. (1996). On a class of weak triangular norm operators. Tech. Report #MII-1528. Machine Intelligence Institute. Iona College. New Rochelle. NY. USA.

Yager, R. & Filev, D. P. (1992). Fuzzy logic controllers with flexible structures. Proc. Second Int. Cont. on Fuzzy Sets and Neural Networks. Izuka Japan. 317-320.

Yager, R. R. & Kelman, A. (1996). Fusion of Fuzzy Information With Considerations for Compatibility, Partial Aggregation and Reinforcement. International Journal of Approximate Reasoning 15. 93-122.

Yager, R. R. & Rybalov, A. (1996). Uninorm aggregation operators. Fuzzy Sets and Systems 80. 111-120.

Yager, R. R. & Rybalov, A. (1997). Noncommutative self-identity aggregation. Fuzzy Sets and Systems 85. 73-82.

Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. SMC, SMC-3. 38-44.

Zadeh, L. A. (1983). The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets and Systems, 11: 199-227.

Zimmermann, H. J. (1991). Fuzzy sets theory and its application. Kluwer Academia Publishers. Boston / Dordrecht / London.

Zimmermann, H. J. & Zysno, P. (1980). Latent connectives in human decision-making. Fuzzy Sets and Systems 4. 37-51.

Cómo citar/How to cite

Cómo citar / How to cite


La Red Martínez, D. L., y César Acosta, J. (2014). Revisión de Operadores de Agregación. Campus Virtuales, Vol. III, Num. 2, pp. 24-44. Consultado el [dd/mm/aaaa] en www.revistacampusvirtuales.es

Usted está aquí: CAMPUS VIRTUALES REVISTA Número Actual Uncategorised Campus Virtuales (Vol. III, Num. 02)